

TKB1 Competent Cells

Instruction Manual

Catalog #200134

Revision D.0

For Research Use Only. Not for use in diagnostic procedures. 200134-12

LIMITED PRODUCT WARRANTY

This warranty limits our liability to replacement of this product. No other warranties of any kind, express or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Agilent. Agilent shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product.

ORDERING INFORMATION AND TECHNICAL SERVICES

Email

techservices@agilent.com

World Wide Web

www.genomics.agilent.com

Telephone

Location	Telephone	
United States and Canada	800 227 9770	
Austria	01 25125 6800	
Benelux	02 404 92 22	
Denmark	45 70 13 00 30	
Finland	010 802 220	
France	0810 446 446	
Germany	0800 603 1000	
Italy	800 012575	
Netherlands	020 547 2600	
Spain	901 11 68 90	
Sweden	08 506 4 8960	
Switzerland	0848 8035 60	
UK/Ireland	0845 712 5292	
All Other Countries	Please visit <u>www.genomics.agilent.com</u> and click Contact Us	

TKB1 Competent Cells

CONTENTS

Materials Provided
Storage Conditions
Additional Materials Required
Introduction
Host Strain and Genotype
Transformation Guidelines
Storage Conditions
Aliquoting Cells
Use of BD Falcon® Polypropylene Tubes
Use of β-Mercaptoethanol3
Quantity of DNA Added
Length of the Heat Pulse
Transformation Protocol
Expected Results5
Induction Protocol
Introduction5
Analysis of Extracts6
Preparation of Media and Reagents6
References
Endnotes
MSDS Information

TKB1 Competent Cells

MATERIALS PROVIDED

Materials provided ^a	Quantity
TKB1 competent cells (red-orange tubes) ^b	5×200 -μl aliquots
pUC18 control plasmid DNA (0.1 ng/µl in TE buffer ^c)	10 μΙ
1.42 M β-mercaptoethanol	25 μl

^a Provides enough reagents for 10 reactions.

STORAGE CONDITIONS

Store cells immediately at -80° C Do not place the cells in liquid nitrogen

ADDITIONAL MATERIALS REQUIRED

14-ml BD Falcon® polypropylene round-bottom tubes (BD Biosciences Catalog #352059)

LB agar plates[§] with 12.5 μg/ml of tetracycline and selecting antibiotic for plasmid encoding the target protein gene

Antibiotics

Ampicillin stock (50 mg/ml in H₂O)

Tetracycline stock [12.5 mg/ml in 50% (v/v) ethanol]

Indoleacrylic acid [2.5 mg/ml in 95% (v/v) ethanol]

TK induction medium§

LB broth§ for target gene expression

IPTG (isopropyl- β -D-thio-galactopyranoside) inducer for target gene expression (stock is 100 mM in H_2O) (Catalog #300127).

Revision D.0

© Agilent Technologies, Inc. 2015.

^b Transformation efficiency is $>5 \times 10^5$ cfu/ μ g of pUC18 DNA. We guarantee the transformation efficiency for these competent cells when used according to the specifications outlined in this instruction manual.

^c See Preparation of Media and Reagents.

[§] See Preparation of Media and Reagents.

INTRODUCTION

The TKB1 competent cells are a tyrosine kinase (TK) derivative of the BL21(DE3) strain [*E. coli* B F⁻ *dcm ompT hsdS*(r_B⁻ m_B⁻) *gal* λ(DE3)].¹⁻³ The BL21(DE3) TK strain, abbreviated TKB1, carries the gene for T7 RNA polymerase in the chromosome under the control of the *lacUV5* promoter. Induction of the polymerase with isopropyl-β-D-thio-galactopyranoside (IPTG) allows controlled protein expression of genes placed downstream of the T7 RNA polymerase binding site. The TKB1 strain harbors a plasmidencoded, inducible tyrosine kinase gene (pTK). The TKB1 strain can be transformed with a plasmid (ColE1 origin) containing a DNA sequence encoding a phosphorylation target domain or protein. If the target protein is cloned as a fusion to an affinity tag, purification of large amounts of phosphorylated protein is relatively easy. The phosphorylated protein isolated from the TK strain can be used to screen expression libraries and to affinity purify or blot proteins that interact with the tyrosine-phosphorylated target.

HOST STRAIN AND GENOTYPE

For the *Escherichia coli* strain, the genes listed in the table below signify that the bacterium carries a mutant allele.

Host strain	References	Genotype
TKB1 strain°	2, 3	E. coli B F¯ dcm ompT hsdS(r _B ¯ m _B ¯) gal λ(DE3) [pTK Tet¹]

^a This strain, a derivative of *E. coli* B, is a general protein expression strain that lacks both the *lon* protease and the *ompT* protease, which can degrade proteins during purification (see Reference 4).

TRANSFORMATION GUIDELINES

Important Please read the following guidelines before proceeding with the Transformation Protocol.

It is important to store the competent cells at -80° C to prevent a loss of efficiency. For best results, please follow the directions outlined in the following sections.

Storage Conditions

Competent cells are very sensitive to even small variations in temperature and must be stored at the bottom of a -80° C freezer. Transferring tubes from one freezer to another may result in a loss of efficiency. Competent cells should be placed at -80° C directly from the dry ice shipping container. Cells stored in this manner should retain their guaranteed efficiency for 6 months.

Aliquoting Cells

When aliquoting, keep the competent cells on ice at all times. It is essential that the 14-ml polypropylene tubes are placed on ice before the cells are thawed and that the cells are aliquoted directly into the prechilled tubes. It is also important to use at least 100 μ l of competent cells/transformation. Using a smaller volume will result in lower efficiencies.

Use of BD Falcon® Polypropylene Tubes

It is important that 14-ml BD Falcon® polypropylene round-bottom tubes (BD Biosciences Catalog #352059) are used for the transformation protocol, since other tubes may be degraded by the β -mercaptoethanol used in step 3 of the *Transformation Protocol*. In addition, the incubation period during the heat-pulse step is critical and has been optimized for the thickness and shape of the 14-ml BD Falcon polypropylene round-bottom tubes.

Use of β -Mercaptoethanol

β-Mercaptoethanol has been shown to increase transformation efficiency two- to threefold. This kit includes prediluted β-mercaptoethanol, which is ready to use. Using the β-mercaptoethanol within 3 months is recommended. Use 1.7 μ l of the β-mercaptoethanol provided or a fresh 1:10 dilution (stock solution 14.2 M)/100 μ l of cells.

Quantity of DNA Added

Add $1-5~\mu l$ of DNA for a final concentration of 10-100~ng of DNA in the transformation.

Length of the Heat Pulse

There is a defined "window" of highest efficiency resulting from the heat pulse in step 8 of the *Transformation Protocol*. Optimal efficiencies are observed when cells are heat-pulsed for 45–50 seconds. Heat-pulsing for at least 45 seconds is recommended to allow for slight variations in the length of incubation. Efficiencies decrease sharply when incubating for <45 seconds or for >60 seconds.

TKB1 Competent Cells 3

TRANSFORMATION PROTOCOL

- 1. Thaw the TKB1 competent cells on ice.
- 2. Gently mix the competent cells by hand. Aliquot $100~\mu l$ of the competent cells into a prechilled 14-ml BD Falcon polypropylene round-bottom tube.
- 3. Add 1.7 μ l of β -mercaptoethanol provided with this kit or a fresh 1:10 dilution (stock 14.2 M) of β -mercaptoethanol [diluted in distilled water (dH₂O)] to the 100 μ l of competent cells, giving a final concentration of 25 mM.
- 4. Swirl the contents of the tube gently. Incubate the polypropylene tube on ice for 10 minutes, swirling the tube gently every 2 minutes.
- 5. Add 10–100 ng (1–5 μl) of DNA to the polypropylene tube and swirl gently. As an optional transformation efficiency control, add 1 μl of the pUC18 control plasmid to another 100-μl aliquot of the competent cells and swirl gently.
- 6. Incubate the two polypropylene tubes on ice for 30 minutes.
- 7. Preheat SOC medium§ in a 42°C water bath for use in step 10.
- 8. Heat-pulse the tubes in a 42°C water bath for 45 seconds. The duration of the heat pulse is critical for obtaining the highest efficiencies.
- 9. Incubate the tubes on ice for 2 minutes.
- 10. Add 0.9 ml of 42°C SOC medium and incubate the tubes at 37°C for 1 hour with shaking at 225–250 rpm.
- 11. When plating the transformed cells, use a sterile spreader to plate ≤200 µl of the transformation mixture on the appropriate antibiotic agar plates.§,∥ For the control transformations, use LB–ampicillin–tetracycline agar plates.§

Note The cells may be concentrated by centrifuging at $200 \times g$ for 3-5 minutes at $4^{\circ}C$ if desired. Resuspend the pellet in $200 \mu l$ of SOC medium and plate immediately.

Plate 200 µl of the cells transformed with the control pUC18 plasmid.

Proceed to the *Induction Protocol*.

- § See Preparation of Media and Reagents.
- When spreading bacteria onto the plate, tilt and tap the spreader to remove the last drop of cells. For the competent cells, if plating <100 μ l of the transformation mixture, plate into a 200- μ l pool of SOC medium. If plating ≥100 μ l, the cells can be spread directly onto the plates.

Expected Results

Bacterial strain	Amount plated	Expected colony number (with the control)	Efficiency (cfυ/μg of pUC18 DNA)
TKB1 strain	200 μΙ	>100	>5 × 10 ⁵

INDUCTION PROTOCOL

Introduction

A two-step protocol has been shown to effectively produce large amounts of phosphorylated fusion protein. Expression of the kinase **target** gene is induced, and the target protein is allowed to accumulate before expression of the kinase gene is induced. Expression of the kinase target gene is induced by addition of IPTG to growing cultures. We recommend a final concentration of 0.4 mM IPTG for constructions carrying the "plain" T7 promoter, or of 1 mM IPTG for vectors having the T7 *lac* promoter.

1. Select a single colony from a freshly streaked plate and inoculate LB broth containing the appropriate antibiotics [tetracycline (12.5 μ g/ml) + target plasmid selection antibiotic]. For good aeration, add medium up to only 20% of the total flask volume.

The BL21(DE3) strain and its TK derivative, TKB1, grow rather slowly. The following steps illustrate a convenient method to generate the seed culture:

- a. Inoculate a single colony into 2 ml of LB broth supplemented with antibiotics and incubate with shaking at 37° C until the OD_{600} reaches 0.6–1.0. This step may take 6–8 hours.
- b. Chill this culture on ice for 10 minutes and store overnight at 4°C.
- 2. Collect the cells the following morning by centrifugation and inoculate 50 ml of LB broth.
- 3. Grow the culture at 37° C to an OD_{600} of 0.4-1.0 (We recommend an OD_{600} of 0.6). Remove a sample for the uninduced control and add IPTG to 0.4 mM (for T7 promoter constructs) or 1.0 mM (for T7 lac promoter constructs) to the induced culture. Continue to incubate both cultures for 2-3 hours.

Note Optimal induction conditions should be determined for your target gene. Production of the target protein can be monitored over time after induction by SDS-PAGE analysis of extracts prepared from cultures harvested after using different induction parameters.

4. Measure the optical density of the culture and collect the cells by centrifugation at $2000 \times g$. Resuspend the cells in the TK induction medium to an OD₆₀₀ of 0.5.

TKB1 Competent Cells 5

- 5. Incubate the TK-induced cultures for 2 hours at 37°C with shaking.
- 6. Harvest the cells by centrifugation at $2000 \times g$ for 10 minutes.

Analysis of Extracts

Phosphorylation of the target gene can be evaluated by immunoblotting using an antiphosphotyrosine antibody. After resolution of *E. coli* extract proteins or purified target proteins by SDS–PAGE, proteins can be electrotransferred to a membrane and blotted with any one of several commercially available antiphosphotyrosine antibodies.

PREPARATION OF MEDIA AND REAGENTS

Add deionized H₂O to a final volume of

1 liter Autoclave

LB-Tetracycline Agar (per Liter) LB Agar (per Liter) 10 g of NaCl 1 liter of LB agar 10 g of tryptone Autoclave 5 g of yeast extract Cool to 55°C 20 g of agar Add 12.5 mg of filter-sterilized tetracycline Adjust pH to 7.0 with 5 N NaOH Pour into petri dishes (~25 ml/100-mm Add deionized H₂O to a final volume of plate) 1 liter Store plates in a dark, cool place or cover Autoclave plates with foil if left out at room Pour into petri dishes (~25 ml/100-mm temperature for extended time periods as tetracycline is light-sensitive plate) LB-Ampicillin-Tetracycline Agar LB-Tetracycline Broth (per Liter) 1 liter of LB broth (per Liter) Autoclave (Use for reduced satellite colony formation) Cool to 55°C 1 liter of LB agar Add 12.5 mg of filter-sterilized tetracycline Autoclave Store broth in a dark, cool place as Cool to 55°C tetracycline is light-sensitive Add 100 mg of filter-sterilized ampicillin Add 12.5 mg of filter-sterilized tetracycline Pour into petri dishes (~25 ml/100-mm plate) LB Broth (per Liter) TE Buffer 5 g of NaCl 10 mM Tris-HCl (pH 7.5) 10 g of tryptone 1 mM EDTA 5 g of yeast extract Adjust to pH 7.0 with 5 N NaOH

(Table continues on the next page)

TK Induction Medium

Modified 5× M9 Medium (per Liter)

30 g of dibasic sodium
phosphate (Na₂HPO₄)
15 g of monobasic potassium
phosphate (KH₂PO₄)
5 g of ammonium chloride (NH₄Cl)
2.5 g of NaCl
15 mg CaCl₂
Autoclave

SOB Medium (per Liter)

20.0 g of tryptone
5.0 g of yeast extract
0.5 g of NaCl
Add deionized H₂O to a final volume of
1 liter
Autoclave
Add 10 ml of filter-sterilized 1 M MgCl₂
and 10 ml of filter-sterilized 1 M
MgSO₄ prior to use

SOC Medium (per 100 ml)

Note This medium should be prepared immediately before use.

2 ml of filter-sterilized 20% (w/v) glucose or 1 ml of filter-sterilized 2 M glucose SOB medium (autoclaved) to a final volume of 100 ml

1× TK Induction Medium (per Liter)

200 ml of modified 5× M9 medium 1 ml of 1 M MgSO₄ · 7H₂O (autoclave)

10 ml of 20% (w/v) glucose (filter sterilize)

5 ml of 20% casamino acids (filter sterilize)

0.1 ml of 0.5% thiamine-HCl (filter sterilize)

4 ml of 2.5 mg/ml indoleacrylic acid stock

1 ml of 50 mg/ml ampicillin [antibiotic selection for **target plasmid** (filter sterilize the stock solution and store at -20°C)

1 ml of 12.5 mg/ml tetracycline [mix tetracycline in 50% (v/v) ethanol and store at -20°C] Dilute to 1 liter with sterile water

REFERENCES

- 1. Studier, F. W. and Moffatt, B. A. (1986) *J Mol Biol* 189(1):113-30.
- 2. Weiner, M. P., Anderson, C., Jerpseth, B., Wells, S., Johnson-Browne, B. *et al.* (1994) *Strategies* 7(2):41–43.
- 3. Simcox, M. E., Huvar, A., Simcox, T. and Vega, Q. (1994) Strategies 7(3):68–69.
- 4. Grodberg, J. and Dunn, J. J. (1988) *J Bacteriol* 170(3):1245-53.

ENDNOTES

Falcon® is a registered trademark of Becton-Dickinson and Company.

MSDS INFORMATION

Material Safety Data Sheets (MSDSs) are provided online at http://www.genomics.agilent.com. MSDS documents are not included with product shipments.

TKB1 Competent Cells 7